skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martin, Sean A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thibault, Guillaume (Ed.)
    Molecular chaperones play a central role in maintaining protein homeostasis. The highly conserved Hsp70 family of chaperones have major functions in folding of nascent peptides, protein refolding, and protein aggregate disassembly. In yeast, loss of two Hsp70 proteins, Ssa1 and Ssa2, is associated with decreased cellular growth and shortened lifespan. While heterologous or mutant temperature-sensitive proteins form anomalous large cytoplasmic inclusions in ssa1Δssa2Δ strains, it is unclear how endogenous wild-type proteins behave and are regulated in the presence of limiting Hsp70s. Using the wild-type yeast Poly A binding protein (Pab1), which is involved in mRNA binding and forms stress granules (SGs) upon heat shock, Pab1 forms large inclusions in approximately half of ssa1Δssa2Δ cells in the absence of stress. Overexpression of Ssa1, Hsp104, and Sis1 almost completely limits the formation of these large inclusions in ssa1Δssa2Δ, suggesting that excess Ssa1, Hsp104, and Sis1 can each compensate for the lower levels of Ssa proteins. Upon heat shock, SGs also form in cells whether large Pab1 inclusions are present or not. Surprisingly, cells containing only SGs disassemble faster than wild type, whereas cells with both large inclusions disassemble slower albeit completely. We suspect that disassembly of these large inclusions is linked to the elevated heat shock response and elevated Hsp104 and Sis1 levels in ssa1Δssa2Δ strains. We also observed that wild-type cultures grown to saturation also form large Pab1-GFP inclusions. These inclusions can be partially rescued by overexpression of Ssa1. Taken together, our data suggest that Hsp70 not only plays a role in limiting unwanted protein aggregation in normal cells, but as cells age, the depletion of active Hsp70 possibly underlies the age-related aggregation of endogenous proteins. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026